Package: r4lineups 0.1.1

r4lineups: Statistical Inference on Lineup Fairness

Since the early 1970s eyewitness testimony researchers have recognised the importance of estimating properties such as lineup bias (is the lineup biased against the suspect, leading to a rate of choosing higher than one would expect by chance?), and lineup size (how many reasonable choices are in fact available to the witness? A lineup is supposed to consist of a suspect and a number of additional members, or foils, whom a poor-quality witness might mistake for the perpetrator). Lineup measures are descriptive, in the first instance, but since the earliest articles in the literature researchers have recognised the importance of reasoning inferentially about them. This package contains functions to compute various properties of laboratory or police lineups, and is intended for use by researchers in forensic psychology and/or eyewitness testimony research. Among others, the r4lineups package includes functions for calculating lineup proportion, functional size, various estimates of effective size, diagnosticity ratio, homogeneity of the diagnosticity ratio, ROC curves for confidence x accuracy data and the degree of similarity of faces in a lineup.

Authors:Colin Tredoux [aut, cre], Tamsyn Naylor [aut]

r4lineups_0.1.1.tar.gz
r4lineups_0.1.1.zip(r-4.5)r4lineups_0.1.1.zip(r-4.4)r4lineups_0.1.1.zip(r-4.3)
r4lineups_0.1.1.tgz(r-4.4-any)r4lineups_0.1.1.tgz(r-4.3-any)
r4lineups_0.1.1.tar.gz(r-4.5-noble)r4lineups_0.1.1.tar.gz(r-4.4-noble)
r4lineups_0.1.1.tgz(r-4.4-emscripten)r4lineups_0.1.1.tgz(r-4.3-emscripten)
r4lineups.pdf |r4lineups.html
r4lineups/json (API)

# Install 'r4lineups' in R:
install.packages('r4lineups', repos = c('https://colintredoux.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.58 score 38 scripts 131 downloads 48 exports 44 dependencies

Last updated 6 years agofrom:6753d4662d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:allfoil_cihighallfoilbiasallpropchi_diagcompare_eff_sizes.bootd_bard_weightsdatacheck1datacheck2datacheck3diag_paramdiag_ratio_Tdiag_ratio_Weff_size_per_foilseffsize_compareesize_mesize_m_bootesize_Tesize_T_bootesize_T_ci_nface_simfunc_sizefunc_size_reportfunc_size.bootgen_boot_propcigen_boot_propmean_segen_boot_samplesgen_boot_samples_listgen_esize_mgen_esize_m_cigen_lineup_propgen_linevechomog_diaghomog_diag_booti_esize_Tlineup_boot_allproplineup_prop_bootlineup_prop_tablineup_prop_vecln_diag_ratiomake_rocmake_rocdatamakevec_proprep_indexrot_vectorshow_lineupvar_diag_ratiovar_lnd

Dependencies:bootclicolorspacecurldplyrfansifarvergenericsggplot2ggrepelglueGPArotationgtablehereisobandlabelinglatticelifecyclemagickmagrittrMASSMatrixmgcvmnormtmunsellnlmepillarpkgconfigplyrpROCpsychpurrrR6RColorBrewerRcpprlangrprojrootscalestibbletidyselectutf8vctrsviridisLitewithr

r4lineups

Rendered fromVignette.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2018-07-18
Started: 2018-07-18

Readme and manuals

Help Manual

Help pageTopics
Confidence Intervals for Proportionallfoil_cihigh
Bias for each lineup memberallfoilbias
Lineup proportion for all lineup membersallprop
Chi-squared estimate of homogeneity of diagnosticity ratiochi_diag
Comparing Effective Size: Base function for bootstrappingcompare_eff_sizes.boot
Mean diagnosticity ratio for k lineup pairsd_bar
Diagnosticity ratio weightsd_weights
Helper functiondatacheck1
Helper functiondatacheck2
Helper functiondatacheck3
Parameters for diagnosticity ratiodiag_param
Diagnosticty Ratio (Tredoux, 1998)diag_ratio_T
Diagnosticity Ratio (Wells & Lindsay, 1980; Wells & Turtle, 1986)diag_ratio_W
Effective Size per Foilseff_size_per_foils
Master Function: Comparing Effective Sizeeffsize_compare
Effective Sizeesize_m
Bootstrapped Effective Sizeesize_m_boot
Effective Size (Tredoux, 1998)esize_T
Bootstrapped Effective Size (Tredoux, 1998)esize_T_boot
Effective Size with Confidence Intervals from Normal Theory (Tredoux, 1998)esize_T_ci_n
Compute similarity of faces in a lineup; experimental functionface_sim
Functional Sizefunc_size
Functional Size with Bootstrapped Confidence Intervalsfunc_size_report
Bootstrapped Functional Sizefunc_size.boot
Percentile of Bootstrapped Lineup Proportiongen_boot_propci
Descriptive statistics for bootstrapped lineup proportiongen_boot_propmean_se
Bootstrap resamplinggen_boot_samples
Bootstrapped resamplinggen_boot_samples_list
Effective Size (across a dataframe)gen_esize_m
Bootstrapped Confidence Intervals for Effective Sizegen_esize_m_ci
Lineup proportion over dataframegen_lineup_prop
Lineup vectorgen_linevec
Master function: Homogeneity of diagnosticity ratiohomog_diag
Homogeneity of diagnosticity ratio with bootstrapped CIshomog_diag_boot
I Component of Effective Size(Tredoux, 1998)i_esize_T
line73line73
Confidence intervals for lineup proportionlineup_boot_allprop
Bootstrapped lineup proportionlineup_prop_boot
Lineup proportionlineup_prop_tab
Lineup proportionlineup_prop_vec
Ln of Diagnosticity Ratioln_diag_ratio
Compute and plot ROC curve for lineup accuracy ~ confidencemake_roc
Helper functions: Compute and plot ROC curve for lineup accuracy ~ confidencemake_rocdata
Helper functionsmakevec_prop
Confidence & Accuracy data (Mickes & Wixted)mickwick
mockdatamockdata
nortje2012nortje2012
Rep indexrep_index
Rotate vectorrot_vector
Helper functionshow_lineup
Variance of diagnosticity ratio (Tredoux)var_diag_ratio
Variance of ln of diagnosticity ratiovar_lnd